SCHUR-WEYL DUALITY

QUANG DAO

ABSTRACT. We will switch gears this week and talk about the relationship
between irreducible representations of the symmetric group Sy and irreducible
finite-dimensional representations of the general linear groups GL,. This is
known as Schur-Weyl duality. Along the way, we will introduce some key
ingredients in the proof such as the Lie algebra gl,, and the Double Commu-
tant Theorem. Schur-Weyl duality also gives rise to the Schur functor, which
generalizes the constructions of the symmetric and exterior powers. We will
comment on this generalization and work out some non-trivial cases by hand.
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1. SOME BACKGROUND

In order to describe the theorems and their proofs, we need some terminology
from module theory and Lie theory.

Definition 1.1. A simple module is a non-zero module with no non-zero proper
submodule.

Definition 1.2. A semi-simple module is a module that can be written as a
direct sum of simple module.

Proposition 1.3. Submodules and quotient modules of a semi-simple module is
semi-simple.

Remark. In the language of representation theory, any representation of a finite

group is a semi-simple module, and simple modules correspond to irreducible rep-
resentations.

The only definition we need from Lie theory is that of a Lie algebra.
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Definition 1.4. Let g be a vector space over a field k and let [[] : g x g — g be a
skew-symmetric bilinear map.
Then (g, [,]) is a Lie algebra if [,] also satisfies the Jacobi identity:

[[a,b],c] + [[b, c], a] + [[¢, a], b] = 0.

Remark. For any Lie group, there is a corresponding Lie algebra. The only case
we need in this talk is the correspondence between GL(V') and gl(V'). Here, gl(V)
is End(V) as a set, and [X,Y] = XY - Y X.

Definition 1.5. Let gi, go be two Lie algebras. A homomorphism of Lie algebra
is 2 map ¢ : g1 — go such that ¢([a,b]) = [#(a), 6(b)).

Definition 1.6. A representation of a Lie algebra g is a vector space V with a
homomorphism of Lie algebras g — gl(V).

Definition 1.7. Given two representations V and W of a Lie algebra g, the tensor
product V ® W is also a representation of g by the formula:

Xvew)=Xvew+v XwVX €g.

2. PLAN OF THE PROOF

Given any finite dimensional vector space V, consider the vector space V€™, We
can view the space as a right S;,,-module, where the action of o € §,, is described
by

(Ul ®®’Un) 0 =Us(1) © . B Vg(n)-
V@™ is also a left GL(V)-module with the action of g € GL(V) as

g (1 ®...0u,) =g(v1)®...0g(v,).

We can easily see that these actions commute. Schur-Weyl duality asserts some-
thing stronger, namely that:

Theorem 2.1. The span of the image of S,, and GL(V) in End(V®") are central-
izers of each other.

From this result and the Double Commutant Theorem, which will be introduced
and proved below, we obtain a decomposition of V®" as a representation of S,, x
GL(V). More specifically,

Theorem 2.2 (Schur-Weyl Duality). We have, as a representation of S, x
GL(V), the decomposition:

(2.1) Ve~ B Vi@ S\V
IA|=n

where Vy’s are all the irreducible representations of S,,, and S\V ~ Homg, (Vy, V™)
is either an irreducible representation of GL(V') or is zero.
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3. DOUBLE COMMUTANT THEOREM

The key theorem that allows us to extract the decomposition from is the
following result in module theory:

Theorem 3.1. Given a finite dimensional vector space V', let A be a semi-simple
subalgebra of End(V'), and B = End4 (V). Then:

(1) B is semi-simple.
(2) A=Endg(V).
(3) As a A® B-module, we have a decomposition:

V~PUuiew,

where U;’s are all the simple modules of A, and each W; ~ Hom 4 (U;, V) is
either a simple module of B or zero. Furthermore, the nonzero W;’s are all
the simple modules of B.

Proof. Since A is semi-simple, we have the decomposition (as A-modules):

(3.1) V ~ P U @ Homa (U3, V)

where the action of A on U; ® Hom 4 (U;, V) is given by: g- (u®@ w) = (g - u) @ w.

Here, each U is a simple module of A. We will prove that each W; = Hom 4 (U;, V)
is also a simple module of B.

Indeed, let W C W; be a non-zero submodule. In order to prove that W = W,
it suffices to prove that for any f, f/ € W, there exists b € B such that b- f = f.

Since U; is a simple A-module, any function f € Homy (U;, V) is determined by
where it sends an arbitrary nonzero element u € U;. Let f(u) = v and f'(u) = v'.
Then define T € End(V) such that T(a-u) = a- v if a-u € Au and T'(v) = v
otherwise. It’s easy to verify that T € Enda(V) = B and T - f = f’, so we are
done.

Now, we also have:

B =End(V)
~ Homa (@D U; @ Wi, V)
~ HomA(é W; @ U;, V)
~ @HomZ(Wi,HomA(Ui,V))
~ éHom(Wi, W;)
~ éEnd(Wi)

so from Artin-Wedderburn, it follows that W;’s are all the simple modules of B.
This also means that B is semi-simple.
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Notice that U; ~ Hompg(W;, V') because of the isomorphism u — ev,, where ev,, :
Hom 4 (U;, V') — V is defined by ev,(f) = f(u). Thus, we get these isomorphisms:

Endp(U) = Homp(@ U; @ W, V)
~ @5 Hom(U;, Homp (W5, U))

~ @End(Ui)
~ AZ

where the last isomorphism is again due to Artin-Wedderburn. This establishes

(2).

Finally, we can write (3.1) as:

V ~ @Wz ® Homp(W;, V)

so that the decomposition is also a B-module isomorphism. Hence, it’s a A ® B-
module isomorphism, which is (3). O

4. PROOF OF SCHUR-WEYL DUALITY

The proof of 2.I] comes in two steps; we will prove that the span of the image of
gl(V) and S,, in End(V®") are centralizers of each other, then prove that the span
of the image of gl(V') and GL(V) in End(V®™") are the same.

Thus, the proof of Schur-Weyl duality will be split into two theorems. The first
theorem is the following:

Theorem 4.1. The subalgebra of End(V®") spanned by the image of gl(V) is
B = End(c[sn](V@’").

Proof. Recall that the action of X € gl(V) on V®" is:
X-(v1®...®vn):Zv1®...®X-vi®...®vn.
i=1

This means that the image of X in End(V®") is
n

IL,, (X)) :Zid@...@X@...@id
i=1
. This image obviously commute with any ¢ € S,,, hence is in B.
On the other hand,

B = Endggs, ) (V")
= End(V®")%»
~ (End(V)®™)"
~ Sym"End(V)

which is spanned by {X®" | X € End(V)}.
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However, we know from the theory of elementary polynomial that
X" = P(I1,(X),IL,(X?),..., I, (X™))

for some polynomial P.
Thus, X®" is in the span of the image of gl(V) for any X € End(V), and so B
is precisely the span of the image of gl(V). O

The other part of the proof relates the image of gl(V) and GL(V):
Theorem 4.2. The span of the image of gl(V) and GL(V) in End(V®") are the

same.

Proof. Let B’ the span of the image of GL(V) in End(V®"). From our discussion
earlier that the action of GL(V) and S,, on V& commutes, we get that B’ C B.

Notice that the image of g € GL(V) in End(V®") is ¢®™. Hence, to establish
the reverse inclusion, the span of {g®" | g € GL(V)} equal the span of {X®" | X €
End(V)}.

Equivalently, it suffices to prove that any X € End(V') is in the span of {g | g €
GL(V)}. But this is not hard to prove, since there exists infinitely many ¢ € R such
that X + tI is invertible (hence in GL(V)), and then X = (X + tI) — tI is in the
span of {g | g € GL(V)}. O

To finish the proof of Schur-Weyl duality, note that since S, is a finite group, the
subalgebra spanned by the image of S,, in End(V®") is semi-simple. From there,
we can apply the Double Commutant Theorem to get the decomposition:

Ven ~ @ Vi ® S\V.
[A|=n

5. SCHUR FUNCTOR AND EXAMPLES

In the decomposition of Schur-Weyl Duality, we note that there is a map V +—
S\V for a given tableau A of n. This can be upgraded to a functor S (so that any
map f:V — W induces a map Sy f : S\V — S\W), called the Schur functor.

We can describe the space S\V =~ Homg, (Vy, V™) more explicitly using the
definition of a Young symmetrizer.

Definition 5.1. Given a tableau A of n with standard numbering, denote:
Py ={g € S, | g preserves every row of A},
and
Qx ={g € S, | g preserves every column of A}.
Furthermore, let
ay = Z g and by = Z sgn(g)g.
gEP gEQN
Then ¢y = ayb) is called the Young symmetrizer of \.
A classical result in the representation of the symmetric group states that these

Young symmetrizers are in correspondence with the irreducible representations of

Sh.
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Theorem 5.2. Given any standard tableau A\ of n, the space V), = C[S,]cy is an
irreducible representation of S,,. Furthermore, any irreducible representation of S,
is isomorphic to C[Sy]cx for some tableau A.

From the theorem above, we can obtain a more explicit description of S\ V. Since
any representation of S, is self-dual, we have:
S\V = Homg, (Vi, V®™)
~ (VA)* ®cs,) VE"
=~ V) ®cjs,] yen
= C[Sh]ex @cys,) VE"
~ VO,
In general, there is no nice description for S)V, but special cases of A give some

familiar constructions.

If A =(n), then

Cln) = Z g, hence S,,)V ~ Sym"V.
gESH
IfA=(1,1,...,1), then

k
Ci1,..1) = Z sgn(g)g, hence S(y 1, 1)V ~ /\ V.
gESn

If A = (n—1,1), then the description is not as nice, but we can still obtain that
Stn-1,)V =~ Ker(Sym" 'V @ V. — Sym™V),
and similarly,

n—1 n
5(2717___71)‘/ ~ Ker(/\ VeV — /\ V)
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