SCHUR-WEYL DUALITY

QUANG DAO

Abstract

We will switch gears this week and talk about the relationship between irreducible representations of the symmetric group S_{k} and irreducible finite-dimensional representations of the general linear groups $G L_{n}$. This is known as Schur-Weyl duality. Along the way, we will introduce some key ingredients in the proof such as the Lie algebra $\mathfrak{g l}_{n}$ and the Double Commutant Theorem. Schur-Weyl duality also gives rise to the Schur functor, which generalizes the constructions of the symmetric and exterior powers. We will comment on this generalization and work out some non-trivial cases by hand.

Contents

1. Some Background 1
2. Plan of the Proof 2
3. Double Commutant Theorem 3
4. Proof of Schur-Weyl Duality 4
5. Schur Functor and Examples 5
References 6

1. Some Background

In order to describe the theorems and their proofs, we need some terminology from module theory and Lie theory.

Definition 1.1. A simple module is a non-zero module with no non-zero proper submodule.

Definition 1.2. A semi-simple module is a module that can be written as a direct sum of simple module.

Proposition 1.3. Submodules and quotient modules of a semi-simple module is semi-simple.

Remark. In the language of representation theory, any representation of a finite group is a semi-simple module, and simple modules correspond to irreducible representations.

The only definition we need from Lie theory is that of a Lie algebra.

[^0]Definition 1.4. Let \mathfrak{g} be a vector space over a field k and let [,]: $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ be a skew-symmetric bilinear map.

Then $(\mathfrak{g},[]$,$) is a Lie algebra if [,] also satisfies the Jacobi identity:$

$$
[[a, b], c]+[[b, c], a]+[[c, a], b]=0
$$

Remark. For any Lie group, there is a corresponding Lie algebra. The only case we need in this talk is the correspondence between $\mathrm{GL}(V)$ and $\mathfrak{g l}(V)$. Here, $\mathfrak{g l}(V)$ is $\operatorname{End}(V)$ as a set, and $[X, Y]=X Y-Y X$.

Definition 1.5. Let \mathfrak{g}_{1}, \mathfrak{g}_{2} be two Lie algebras. A homomorphism of Lie algebra is a map $\phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that $\phi([a, b])=[\phi(a), \phi(b)]$.

Definition 1.6. A representation of a Lie algebra \mathfrak{g} is a vector space V with a homomorphism of Lie algebras $\mathfrak{g} \rightarrow \mathfrak{g l}(V)$.

Definition 1.7. Given two representations V and W of a Lie algebra \mathfrak{g}, the tensor product $V \otimes W$ is also a representation of \mathfrak{g} by the formula:

$$
X(v \otimes w)=X v \otimes w+v \otimes X w \forall X \in \mathfrak{g}
$$

2. Plan of the Proof

Given any finite dimensional vector space V, consider the vector space $V^{\otimes n}$. We can view the space as a right S_{n}-module, where the action of $\sigma \in S_{n}$ is described by

$$
\left(v_{1} \otimes \ldots \otimes v_{n}\right) \cdot \sigma=v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}
$$

$V^{\otimes n}$ is also a left $\mathrm{GL}(V)$-module with the action of $g \in \mathrm{GL}(V)$ as

$$
g \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=g\left(v_{1}\right) \otimes \ldots \otimes g\left(v_{n}\right)
$$

We can easily see that these actions commute. Schur-Weyl duality asserts something stronger, namely that:

Theorem 2.1. The span of the image of S_{n} and $\operatorname{GL}(V)$ in $\operatorname{End}\left(V^{\otimes n}\right)$ are centralizers of each other.

From this result and the Double Commutant Theorem, which will be introduced and proved below, we obtain a decomposition of $V^{\otimes n}$ as a representation of $S_{n} \times$ $\mathrm{GL}(V)$. More specifically,

Theorem 2.2 (Schur-Weyl Duality). We have, as a representation of $S_{n} \times$ $\mathrm{GL}(V)$, the decomposition:

$$
\begin{equation*}
V^{\otimes n} \simeq \bigoplus_{|\lambda|=n} V_{\lambda} \otimes S_{\lambda} V \tag{2.1}
\end{equation*}
$$

where V_{λ} 's are all the irreducible representations of S_{n}, and $S_{\lambda} V \simeq \operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{\otimes n}\right)$ is either an irreducible representation of $\mathrm{GL}(V)$ or is zero.

3. Double Commutant Theorem

The key theorem that allows us to extract the decomposition from 2.1 is the following result in module theory:

Theorem 3.1. Given a finite dimensional vector space V, let A be a semi-simple subalgebra of $\operatorname{End}(V)$, and $B=\operatorname{End}_{A}(V)$. Then:
(1) B is semi-simple.
(2) $\mathrm{A}=\operatorname{End}_{B}(V)$.
(3) As a $A \otimes B$-module, we have a decomposition:

$$
V \simeq \bigoplus_{i} U_{i} \otimes W_{i}
$$

where U_{i} 's are all the simple modules of A, and each $W_{i} \simeq \operatorname{Hom}_{A}\left(U_{i}, V\right)$ is either a simple module of B or zero. Furthermore, the nonzero W_{i} 's are all the simple modules of B.

Proof. Since A is semi-simple, we have the decomposition (as A-modules):

$$
\begin{equation*}
V \simeq \bigoplus_{i} U_{i} \otimes \operatorname{Hom}_{A}\left(U_{i}, V\right) \tag{3.1}
\end{equation*}
$$

where the action of A on $U_{i} \otimes \operatorname{Hom}_{A}\left(U_{i}, V\right)$ is given by: $g \cdot(u \otimes w)=(g \cdot u) \otimes w$.
Here, each U_{i} is a simple module of A. We will prove that each $W_{i}=\operatorname{Hom}_{A}\left(U_{i}, V\right)$ is also a simple module of B.

Indeed, let $W \subset W_{i}$ be a non-zero submodule. In order to prove that $W=W_{i}$, it suffices to prove that for any $f, f^{\prime} \in W$, there exists $b \in B$ such that $b \cdot f=f^{\prime}$.

Since U_{i} is a simple A-module, any function $f \in \operatorname{Hom}_{A}\left(U_{i}, V\right)$ is determined by where it sends an arbitrary nonzero element $u \in U_{i}$. Let $f(u)=v$ and $f^{\prime}(u)=v^{\prime}$. Then define $T \in \operatorname{End}(V)$ such that $T(a \cdot u)=a \cdot u^{\prime}$ if $a \cdot u \in A u$ and $T(v)=v$ otherwise. It's easy to verify that $T \in \operatorname{End}_{A}(V)=B$ and $T \cdot f=f^{\prime}$, so we are done.

Now, we also have:

$$
\begin{aligned}
B & =\operatorname{End}_{A}(V) \\
& \simeq \operatorname{Hom}_{A}\left(\bigoplus_{i} U_{i} \otimes W_{i}, V\right) \\
& \simeq \operatorname{Hom}_{A}\left(\bigoplus_{i} W_{i} \otimes U_{i}, V\right) \\
& \simeq \bigoplus_{i} \operatorname{Hom}\left(W_{i}, \operatorname{Hom}_{A}\left(U_{i}, V\right)\right) \\
& \simeq \bigoplus_{i} \operatorname{Hom}\left(W_{i}, W_{i}\right) \\
& \simeq \bigoplus_{i} \operatorname{End}\left(W_{i}\right)
\end{aligned}
$$

so from Artin-Wedderburn, it follows that W_{i} 's are all the simple modules of B. This also means that B is semi-simple.

Notice that $U_{i} \simeq \operatorname{Hom}_{B}\left(W_{i}, V\right)$ because of the isomorphism $u \mapsto \mathrm{ev}_{u}$, where ev_{u} : $\operatorname{Hom}_{A}\left(U_{i}, V\right) \rightarrow V$ is defined by $\mathrm{ev}_{u}(f)=f(u)$. Thus, we get these isomorphisms:

$$
\begin{aligned}
\operatorname{End}_{B}(U) & =\operatorname{Hom}_{B}\left(\bigoplus_{i} U_{i} \otimes W_{i}, V\right) \\
& \simeq \bigoplus_{i} \operatorname{Hom}\left(U_{i}, \operatorname{Hom}_{B}\left(W_{i}, U\right)\right) \\
& \simeq \bigoplus_{i} \operatorname{Hom}\left(U_{i}, U_{i}\right) \\
& \simeq \bigoplus_{i} \operatorname{End}\left(U_{i}\right) \\
& \simeq A
\end{aligned}
$$

where the last isomorphism is again due to Artin-Wedderburn. This establishes (2).

Finally, we can write (3.1) as:

$$
V \simeq \bigoplus_{i} W_{i} \otimes \operatorname{Hom}_{B}\left(W_{i}, V\right)
$$

so that the decomposition is also a B-module isomorphism. Hence, it's a $A \otimes B$ module isomorphism, which is (3).

4. Proof of Schur-Weyl Duality

The proof of 2.1 comes in two steps; we will prove that the span of the image of $\mathfrak{g l}(V)$ and S_{n} in $\operatorname{End}\left(V^{\otimes n}\right)$ are centralizers of each other, then prove that the span of the image of $\mathfrak{g l}(V)$ and $\mathrm{GL}(V)$ in $\operatorname{End}\left(V^{\otimes n}\right)$ are the same.

Thus, the proof of Schur-Weyl duality will be split into two theorems. The first theorem is the following:

Theorem 4.1. The subalgebra of $\operatorname{End}\left(V^{\otimes n}\right)$ spanned by the image of $\mathfrak{g l}(V)$ is $B=\operatorname{End}_{\mathbb{C}\left[S_{n}\right]}\left(V^{\otimes n}\right)$.
Proof. Recall that the action of $X \in \mathfrak{g l}(V)$ on $V^{\otimes n}$ is:

$$
X \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\sum_{i=1}^{n} v_{1} \otimes \ldots \otimes X \cdot v_{i} \otimes \ldots \otimes v_{n}
$$

This means that the image of X in $\operatorname{End}\left(V^{\otimes n}\right)$ is

$$
\Pi_{n}(X)=\sum_{i=1}^{n} \mathrm{id} \otimes \ldots \otimes X \otimes \ldots \otimes \mathrm{id}
$$

. This image obviously commute with any $\sigma \in S_{n}$, hence is in B.
On the other hand,

$$
\begin{aligned}
B & =\operatorname{End}_{\mathbb{C}\left[S_{n}\right]}\left(V^{\otimes n}\right) \\
& =\operatorname{End}\left(V^{\otimes n}\right)^{S_{n}} \\
& \simeq\left(\operatorname{End}(V)^{\otimes n}\right)^{S_{n}} \\
& \simeq \operatorname{Sym}^{n} \operatorname{End}(V)
\end{aligned}
$$

which is spanned by $\left\{X^{\otimes n} \mid X \in \operatorname{End}(V)\right\}$.

However, we know from the theory of elementary polynomial that

$$
X^{\otimes n}=\mathrm{P}\left(\Pi_{n}(X), \Pi_{n}\left(X^{2}\right), \ldots, \Pi_{n}\left(X^{n}\right)\right)
$$

for some polynomial P .
Thus, $X^{\otimes n}$ is in the span of the image of $\mathfrak{g l}(V)$ for any $X \in \operatorname{End}(V)$, and so B is precisely the span of the image of $\mathfrak{g l}(V)$.

The other part of the proof relates the image of $\mathfrak{g l}(V)$ and $\mathrm{GL}(V)$:
Theorem 4.2. The span of the image of $\mathfrak{g l}(V)$ and $\mathrm{GL}(V)$ in $\operatorname{End}\left(V^{\otimes n}\right)$ are the same.

Proof. Let B^{\prime} the span of the image of $\mathrm{GL}(V)$ in $\operatorname{End}\left(V^{\otimes n}\right)$. From our discussion earlier that the action of $\mathrm{GL}(V)$ and S_{n} on $V^{\otimes n}$ commutes, we get that $B^{\prime} \subset B$.

Notice that the image of $g \in \mathrm{GL}(V)$ in $\operatorname{End}\left(V^{\otimes n}\right)$ is $g^{\otimes n}$. Hence, to establish the reverse inclusion, the span of $\left\{g^{\otimes n} \mid g \in \operatorname{GL}(V)\right\}$ equal the span of $\left\{X^{\otimes n} \mid X \in\right.$ $\operatorname{End}(V)\}$.

Equivalently, it suffices to prove that any $X \in \operatorname{End}(V)$ is in the span of $\{g \mid g \in$ $\mathrm{GL}(V)\}$. But this is not hard to prove, since there exists infinitely many $t \in \mathbb{R}$ such that $X+t I$ is invertible (hence in $\mathrm{GL}(V))$, and then $X=(X+t I)-t I$ is in the span of $\{g \mid g \in \operatorname{GL}(V)\}$.

To finish the proof of Schur-Weyl duality, note that since S_{n} is a finite group, the subalgebra spanned by the image of S_{n} in $\operatorname{End}\left(V^{\otimes n}\right)$ is semi-simple. From there, we can apply the Double Commutant Theorem to get the decomposition:

$$
V^{\otimes n} \simeq \bigoplus_{|\lambda|=n} V_{\lambda} \otimes S_{\lambda} V
$$

5. Schur Functor and Examples

In the decomposition of Schur-Weyl Duality, we note that there is a map $V \mapsto$ $S_{\lambda} V$ for a given tableau λ of n. This can be upgraded to a functor S_{λ} (so that any $\operatorname{map} f: V \rightarrow W$ induces a map $S_{\lambda} f: S_{\lambda} V \rightarrow S_{\lambda} W$), called the Schur functor.

We can describe the space $S_{\lambda} V \simeq \operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{\otimes n}\right)$ more explicitly using the definition of a Young symmetrizer.
Definition 5.1. Given a tableau λ of n with standard numbering, denote:

$$
P_{\lambda}=\left\{g \in S_{n} \mid g \text { preserves every row of } \lambda\right\}
$$

and

$$
Q_{\lambda}=\left\{g \in S_{n} \mid g \text { preserves every column of } \lambda\right\}
$$

Furthermore, let

$$
a_{\lambda}=\sum_{g \in P_{\lambda}} g \text { and } b_{\lambda}=\sum_{g \in Q_{\lambda}} \operatorname{sgn}(g) g
$$

Then $c_{\lambda}=a_{\lambda} b_{\lambda}$ is called the Young symmetrizer of λ.
A classical result in the representation of the symmetric group states that these Young symmetrizers are in correspondence with the irreducible representations of S_{n}.

Theorem 5.2. Given any standard tableau λ of n, the space $V_{\lambda}=\mathbb{C}\left[S_{n}\right] c_{\lambda}$ is an irreducible representation of S_{n}. Furthermore, any irreducible representation of S_{n} is isomorphic to $\mathbb{C}\left[S_{n}\right] c_{\lambda}$ for some tableau λ.

From the theorem above, we can obtain a more explicit description of $S_{\lambda} V$. Since any representation of S_{n} is self-dual, we have:

$$
\begin{aligned}
S_{\lambda} V & =\operatorname{Hom}_{S_{n}}\left(V_{\lambda}, V^{\otimes n}\right) \\
& \simeq\left(V_{\lambda}\right)^{*} \otimes_{\mathbb{C}\left[S_{n}\right]} V^{\otimes n} \\
& \simeq V_{\lambda} \otimes_{\mathbb{C}\left[S_{n}\right]} V^{\otimes n} \\
& =\mathbb{C}\left[S_{n}\right] c_{\lambda} \otimes_{\mathbb{C}\left[S_{n}\right]} V^{\otimes n} \\
& \simeq V^{\otimes n} c_{\lambda}
\end{aligned}
$$

In general, there is no nice description for $S_{\lambda} V$, but special cases of λ give some familiar constructions.

If $\lambda=(n)$, then

$$
c_{(n)}=\sum_{g \in S_{n}} g, \text { hence } S_{(n)} V \simeq \operatorname{Sym}^{n} V .
$$

If $\lambda=(1,1, \ldots, 1)$, then

$$
c_{(1,1, \ldots, 1)}=\sum_{g \in S_{n}} \operatorname{sgn}(g) g, \text { hence } S_{(1,1, \ldots, 1)} V \simeq \bigwedge^{k} V
$$

If $\lambda=(n-1,1)$, then the description is not as nice, but we can still obtain that

$$
S_{(n-1,1)} V \simeq \operatorname{Ker}\left(\operatorname{Sym}^{n-1} V \otimes V \rightarrow \operatorname{Sym}^{n} V\right)
$$

and similarly,

$$
S_{(2,1, \ldots, 1)} V \simeq \operatorname{Ker}\left(\bigwedge^{n-1} V \otimes V \rightarrow \bigwedge^{n} V\right)
$$

References
[1] James Stevens. Schur-Weyl Duality. UChicago REU 2016. http://math.uchicago.edu/ may/REU2016/REUPapers/Stevens.pdf
[2] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina. Introduction to Representation Theory. http://www-math.mit.edu/ etingof/replect.pdf
[3] Qiaochu Yuan. Four flavors of Schur-Weyl duality. https://qchu.wordpress.com/2012/11/13/four-flavors-of-schur-weyl-duality/
[4] Qiaoochu Yuan. The double commutant theorem.
https://qchu.wordpress.com/2012/11/11/the-double-commutant-theorem/

[^0]: Date: July 29, 2018.

