
SCHUR-WEYL DUALITY

QUANG DAO

Abstract. We will switch gears this week and talk about the relationship

between irreducible representations of the symmetric group Sk and irreducible
finite-dimensional representations of the general linear groups GLn. This is

known as Schur-Weyl duality. Along the way, we will introduce some key
ingredients in the proof such as the Lie algebra gln and the Double Commu-

tant Theorem. Schur-Weyl duality also gives rise to the Schur functor, which

generalizes the constructions of the symmetric and exterior powers. We will
comment on this generalization and work out some non-trivial cases by hand.
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1. Some Background

In order to describe the theorems and their proofs, we need some terminology
from module theory and Lie theory.

Definition 1.1. A simple module is a non-zero module with no non-zero proper
submodule.

Definition 1.2. A semi-simple module is a module that can be written as a
direct sum of simple module.

Proposition 1.3. Submodules and quotient modules of a semi-simple module is
semi-simple.

Remark. In the language of representation theory, any representation of a finite
group is a semi-simple module, and simple modules correspond to irreducible rep-
resentations.

The only definition we need from Lie theory is that of a Lie algebra.
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Definition 1.4. Let g be a vector space over a field k and let [,] : g× g→ g be a
skew-symmetric bilinear map.

Then (g, [,]) is a Lie algebra if [, ] also satisfies the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

Remark. For any Lie group, there is a corresponding Lie algebra. The only case
we need in this talk is the correspondence between GL(V ) and gl(V ). Here, gl(V )
is End(V ) as a set, and [X,Y ] = XY − Y X.

Definition 1.5. Let g1, g2 be two Lie algebras. A homomorphism of Lie algebra
is a map φ : g1 → g2 such that φ([a, b]) = [φ(a), φ(b)].

Definition 1.6. A representation of a Lie algebra g is a vector space V with a
homomorphism of Lie algebras g→ gl(V ).

Definition 1.7. Given two representations V and W of a Lie algebra g, the tensor
product V ⊗W is also a representation of g by the formula:

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw ∀X ∈ g.

2. Plan of the Proof

Given any finite dimensional vector space V , consider the vector space V ⊗n. We
can view the space as a right Sn-module, where the action of σ ∈ Sn is described
by

(v1 ⊗ . . .⊗ vn) · σ = vσ(1) ⊗ . . .⊗ vσ(n).

V ⊗n is also a left GL(V )-module with the action of g ∈ GL(V ) as

g · (v1 ⊗ . . .⊗ vn) = g(v1)⊗ . . .⊗ g(vn).

We can easily see that these actions commute. Schur-Weyl duality asserts some-
thing stronger, namely that:

Theorem 2.1. The span of the image of Sn and GL(V ) in End(V ⊗n) are central-
izers of each other.

From this result and the Double Commutant Theorem, which will be introduced
and proved below, we obtain a decomposition of V ⊗n as a representation of Sn ×
GL(V ). More specifically,

Theorem 2.2 (Schur-Weyl Duality). We have, as a representation of Sn ×
GL(V ), the decomposition:

(2.1) V ⊗n '
⊕
|λ|=n

Vλ ⊗ SλV

where Vλ’s are all the irreducible representations of Sn, and SλV ' HomSn(Vλ, V
⊗n)

is either an irreducible representation of GL(V ) or is zero.



SCHUR-WEYL DUALITY 3

3. Double Commutant Theorem

The key theorem that allows us to extract the decomposition from 2.1 is the
following result in module theory:

Theorem 3.1. Given a finite dimensional vector space V , let A be a semi-simple
subalgebra of End(V ), and B = EndA(V ). Then:

(1) B is semi-simple.
(2) A=EndB(V ).
(3) As a A⊗B-module, we have a decomposition:

V '
⊕
i

Ui ⊗Wi

where Ui’s are all the simple modules of A, and each Wi ' HomA(Ui, V ) is
either a simple module of B or zero. Furthermore, the nonzero Wi’s are all
the simple modules of B.

Proof. Since A is semi-simple, we have the decomposition (as A-modules):

(3.1) V '
⊕
i

Ui ⊗HomA(Ui, V )

where the action of A on Ui ⊗HomA(Ui, V ) is given by: g · (u⊗ w) = (g · u)⊗ w.
Here, each Ui is a simple module ofA. We will prove that eachWi = HomA(Ui, V )

is also a simple module of B.
Indeed, let W ⊂ Wi be a non-zero submodule. In order to prove that W = Wi,

it suffices to prove that for any f, f ′ ∈W , there exists b ∈ B such that b · f = f ′.
Since Ui is a simple A-module, any function f ∈ HomA(Ui, V ) is determined by

where it sends an arbitrary nonzero element u ∈ Ui. Let f(u) = v and f ′(u) = v′.
Then define T ∈ End(V ) such that T (a · u) = a · u′ if a · u ∈ Au and T (v) = v
otherwise. It’s easy to verify that T ∈ EndA(V ) = B and T · f = f ′, so we are
done.

Now, we also have:

B = EndA(V )

' HomA(
⊕
i

Ui ⊗Wi, V )

' HomA(
⊕
i

Wi ⊗ Ui, V )

'
⊕
i

Hom(Wi,HomA(Ui, V ))

'
⊕
i

Hom(Wi,Wi)

'
⊕
i

End(Wi)

so from Artin-Wedderburn, it follows that Wi’s are all the simple modules of B.
This also means that B is semi-simple.
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Notice that Ui ' HomB(Wi, V ) because of the isomorphism u 7→ evu, where evu :
HomA(Ui, V )→ V is defined by evu(f) = f(u). Thus, we get these isomorphisms:

EndB(U) = HomB(
⊕
i

Ui ⊗Wi, V )

'
⊕
i

Hom(Ui,HomB(Wi, U))

'
⊕
i

Hom(Ui, Ui)

'
⊕
i

End(Ui)

' A

where the last isomorphism is again due to Artin-Wedderburn. This establishes
(2).

Finally, we can write (3.1) as:

V '
⊕
i

Wi ⊗HomB(Wi, V )

so that the decomposition is also a B-module isomorphism. Hence, it’s a A ⊗ B-
module isomorphism, which is (3). �

4. Proof of Schur-Weyl Duality

The proof of 2.1 comes in two steps; we will prove that the span of the image of
gl(V ) and Sn in End(V ⊗n) are centralizers of each other, then prove that the span
of the image of gl(V ) and GL(V ) in End(V ⊗n) are the same.

Thus, the proof of Schur-Weyl duality will be split into two theorems. The first
theorem is the following:

Theorem 4.1. The subalgebra of End(V ⊗n) spanned by the image of gl(V ) is
B = EndC[Sn](V

⊗n).

Proof. Recall that the action of X ∈ gl(V ) on V ⊗n is:

X · (v1 ⊗ . . .⊗ vn) =

n∑
i=1

v1 ⊗ . . .⊗X · vi ⊗ . . .⊗ vn.

This means that the image of X in End(V ⊗n) is

Πn(X) =

n∑
i=1

id⊗ . . .⊗X ⊗ . . .⊗ id

. This image obviously commute with any σ ∈ Sn, hence is in B.
On the other hand,

B = EndC[Sn](V
⊗n)

= End(V ⊗n)Sn

' (End(V )⊗n)Sn

' SymnEnd(V )

which is spanned by {X⊗n | X ∈ End(V )}.
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However, we know from the theory of elementary polynomial that

X⊗n = P(Πn(X),Πn(X2), . . . ,Πn(Xn))

for some polynomial P.
Thus, X⊗n is in the span of the image of gl(V ) for any X ∈ End(V ), and so B

is precisely the span of the image of gl(V ). �

The other part of the proof relates the image of gl(V ) and GL(V ):

Theorem 4.2. The span of the image of gl(V ) and GL(V ) in End(V ⊗n) are the
same.

Proof. Let B′ the span of the image of GL(V ) in End(V ⊗n). From our discussion
earlier that the action of GL(V ) and Sn on V ⊗n commutes, we get that B′ ⊂ B.

Notice that the image of g ∈ GL(V ) in End(V ⊗n) is g⊗n. Hence, to establish
the reverse inclusion, the span of {g⊗n | g ∈ GL(V )} equal the span of {X⊗n | X ∈
End(V )}.

Equivalently, it suffices to prove that any X ∈ End(V ) is in the span of {g | g ∈
GL(V )}. But this is not hard to prove, since there exists infinitely many t ∈ R such
that X + tI is invertible (hence in GL(V )), and then X = (X + tI) − tI is in the
span of {g | g ∈ GL(V )}. �

To finish the proof of Schur-Weyl duality, note that since Sn is a finite group, the
subalgebra spanned by the image of Sn in End(V ⊗n) is semi-simple. From there,
we can apply the Double Commutant Theorem to get the decomposition:

V ⊗n '
⊕
|λ|=n

Vλ ⊗ SλV.

5. Schur Functor and Examples

In the decomposition of Schur-Weyl Duality, we note that there is a map V 7→
SλV for a given tableau λ of n. This can be upgraded to a functor Sλ (so that any
map f : V →W induces a map Sλf : SλV → SλW ), called the Schur functor.

We can describe the space SλV ' HomSn(Vλ, V
⊗n) more explicitly using the

definition of a Young symmetrizer.

Definition 5.1. Given a tableau λ of n with standard numbering, denote:

Pλ = {g ∈ Sn | g preserves every row of λ},

and

Qλ = {g ∈ Sn | g preserves every column of λ}.
Furthermore, let

aλ =
∑
g∈Pλ

g and bλ =
∑
g∈Qλ

sgn(g)g.

Then cλ = aλbλ is called the Young symmetrizer of λ.

A classical result in the representation of the symmetric group states that these
Young symmetrizers are in correspondence with the irreducible representations of
Sn.
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Theorem 5.2. Given any standard tableau λ of n, the space Vλ = C[Sn]cλ is an
irreducible representation of Sn. Furthermore, any irreducible representation of Sn
is isomorphic to C[Sn]cλ for some tableau λ.

From the theorem above, we can obtain a more explicit description of SλV . Since
any representation of Sn is self-dual, we have:

SλV = HomSn(Vλ, V
⊗n)

' (Vλ)∗ ⊗C[Sn] V
⊗n

' Vλ ⊗C[Sn] V
⊗n

= C[Sn]cλ ⊗C[Sn] V
⊗n

' V ⊗ncλ
In general, there is no nice description for SλV , but special cases of λ give some

familiar constructions.
If λ = (n), then

c(n) =
∑
g∈Sn

g, hence S(n)V ' SymnV.

If λ = (1, 1, . . . , 1), then

c(1,1,...,1) =
∑
g∈Sn

sgn(g)g, hence S(1,1,...,1)V '
∧k

V.

If λ = (n− 1, 1), then the description is not as nice, but we can still obtain that

S(n−1,1)V ' Ker(Symn−1V ⊗ V → SymnV ),

and similarly,

S(2,1,...,1)V ' Ker(
∧n−1

V ⊗ V →
∧n

V ).
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