SCHUR-WEYL DUALITY

QUANG DAO

ABSTRACT. We will switch gears this week and talk about the relationship between irreducible representations of the symmetric group S_k and irreducible finite-dimensional representations of the general linear groups GL_n . This is known as Schur-Weyl duality. Along the way, we will introduce some key ingredients in the proof such as the Lie algebra \mathfrak{gl}_n and the Double Commutant Theorem. Schur-Weyl duality also gives rise to the Schur functor, which generalizes the constructions of the symmetric and exterior powers. We will comment on this generalization and work out some non-trivial cases by hand.

Contents

1.	Some Background	1
2.	Plan of the Proof	2
3.	Double Commutant Theorem	3
4.	Proof of Schur-Weyl Duality	4
5.	Schur Functor and Examples	5
References		6

1. Some Background

In order to describe the theorems and their proofs, we need some terminology from module theory and Lie theory.

Definition 1.1. A **simple module** is a non-zero module with no non-zero proper submodule.

Definition 1.2. A **semi-simple module** is a module that can be written as a direct sum of simple module.

Proposition 1.3. Submodules and quotient modules of a semi-simple module is semi-simple.

Remark. In the language of representation theory, any representation of a finite group is a semi-simple module, and simple modules correspond to irreducible representations.

The only definition we need from Lie theory is that of a Lie algebra.

Date: July 29, 2018.

Definition 1.4. Let \mathfrak{g} be a vector space over a field k and let $[,] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ be a skew-symmetric bilinear map.

Then $(\mathfrak{g}, [,])$ is a **Lie algebra** if [,] also satisfies the Jacobi identity:

$$[[a, b], c] + [[b, c], a] + [[c, a], b] = 0$$

Remark. For any Lie group, there is a corresponding Lie algebra. The only case we need in this talk is the correspondence between GL(V) and $\mathfrak{gl}(V)$. Here, $\mathfrak{gl}(V)$ is End(V) as a set, and [X, Y] = XY - YX.

Definition 1.5. Let \mathfrak{g}_1 , \mathfrak{g}_2 be two Lie algebras. A homomorphism of Lie algebra is a map $\phi : \mathfrak{g}_1 \to \mathfrak{g}_2$ such that $\phi([a, b]) = [\phi(a), \phi(b)]$.

Definition 1.6. A representation of a Lie algebra \mathfrak{g} is a vector space V with a homomorphism of Lie algebras $\mathfrak{g} \to \mathfrak{gl}(V)$.

Definition 1.7. Given two representations V and W of a Lie algebra \mathfrak{g} , the tensor product $V \otimes W$ is also a representation of \mathfrak{g} by the formula:

$$X(v \otimes w) = Xv \otimes w + v \otimes Xw \; \forall X \in \mathfrak{g}.$$

2. Plan of the Proof

Given any finite dimensional vector space V, consider the vector space $V^{\otimes n}$. We can view the space as a right S_n -module, where the action of $\sigma \in S_n$ is described by

$$(v_1 \otimes \ldots \otimes v_n) \cdot \sigma = v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}.$$

 $V^{\otimes n}$ is also a left $\operatorname{GL}(V)$ -module with the action of $g \in \operatorname{GL}(V)$ as

$$g \cdot (v_1 \otimes \ldots \otimes v_n) = g(v_1) \otimes \ldots \otimes g(v_n).$$

We can easily see that these actions commute. Schur-Weyl duality asserts something stronger, namely that:

Theorem 2.1. The span of the image of S_n and GL(V) in $End(V^{\otimes n})$ are centralizers of each other.

From this result and the Double Commutant Theorem, which will be introduced and proved below, we obtain a decomposition of $V^{\otimes n}$ as a representation of $S_n \times \operatorname{GL}(V)$. More specifically,

Theorem 2.2 (Schur-Weyl Duality). We have, as a representation of $S_n \times GL(V)$, the decomposition:

(2.1)
$$V^{\otimes n} \simeq \bigoplus_{|\lambda|=n} V_{\lambda} \otimes S_{\lambda} V$$

where V_{λ} 's are all the irreducible representations of S_n , and $S_{\lambda}V \simeq \operatorname{Hom}_{S_n}(V_{\lambda}, V^{\otimes n})$ is either an irreducible representation of $\operatorname{GL}(V)$ or is zero.

SCHUR-WEYL DUALITY

3. Double Commutant Theorem

The key theorem that allows us to extract the decomposition from 2.1 is the following result in module theory:

Theorem 3.1. Given a finite dimensional vector space V, let A be a semi-simple subalgebra of End(V), and $B = \text{End}_A(V)$. Then:

- (1) B is semi-simple.
- (2) $A=End_B(V)$.
- (3) As a $A \otimes B$ -module, we have a decomposition:

$$V \simeq \bigoplus_i U_i \otimes W_i$$

where U_i 's are all the simple modules of A, and each $W_i \simeq \text{Hom}_A(U_i, V)$ is either a simple module of B or zero. Furthermore, the nonzero W_i 's are all the simple modules of B.

Proof. Since A is semi-simple, we have the decomposition (as A-modules):

(3.1)
$$V \simeq \bigoplus_{i} U_i \otimes \operatorname{Hom}_A(U_i, V)$$

where the action of A on $U_i \otimes \operatorname{Hom}_A(U_i, V)$ is given by: $g \cdot (u \otimes w) = (g \cdot u) \otimes w$.

Here, each U_i is a simple module of A. We will prove that each $W_i = \text{Hom}_A(U_i, V)$ is also a simple module of B.

Indeed, let $W \subset W_i$ be a non-zero submodule. In order to prove that $W = W_i$, it suffices to prove that for any $f, f' \in W$, there exists $b \in B$ such that $b \cdot f = f'$.

Since U_i is a simple A-module, any function $f \in \text{Hom}_A(U_i, V)$ is determined by where it sends an arbitrary nonzero element $u \in U_i$. Let f(u) = v and f'(u) = v'. Then define $T \in \text{End}(V)$ such that $T(a \cdot u) = a \cdot u'$ if $a \cdot u \in Au$ and T(v) = votherwise. It's easy to verify that $T \in \text{End}_A(V) = B$ and $T \cdot f = f'$, so we are done.

Now, we also have:

$$B = \operatorname{End}_{A}(V)$$

$$\simeq \operatorname{Hom}_{A}(\bigoplus_{i} U_{i} \otimes W_{i}, V)$$

$$\simeq \operatorname{Hom}_{A}(\bigoplus_{i} W_{i} \otimes U_{i}, V)$$

$$\simeq \bigoplus_{i} \operatorname{Hom}(W_{i}, \operatorname{Hom}_{A}(U_{i}, V))$$

$$\simeq \bigoplus_{i} \operatorname{Hom}(W_{i}, W_{i})$$

$$\simeq \bigoplus_{i} \operatorname{End}(W_{i})$$

so from Artin-Wedderburn, it follows that W_i 's are all the simple modules of B. This also means that B is semi-simple. Notice that $U_i \simeq \operatorname{Hom}_B(W_i, V)$ because of the isomorphism $u \mapsto \operatorname{ev}_u$, where ev_u : $\operatorname{Hom}_A(U_i, V) \to V$ is defined by $\operatorname{ev}_u(f) = f(u)$. Thus, we get these isomorphisms:

$$\operatorname{End}_{B}(U) = \operatorname{Hom}_{B}(\bigoplus_{i} U_{i} \otimes W_{i}, V)$$
$$\simeq \bigoplus_{i} \operatorname{Hom}(U_{i}, \operatorname{Hom}_{B}(W_{i}, U))$$
$$\simeq \bigoplus_{i} \operatorname{Hom}(U_{i}, U_{i})$$
$$\simeq \bigoplus_{i} \operatorname{End}(U_{i})$$
$$\simeq A$$

where the last isomorphism is again due to Artin-Wedderburn. This establishes (2).

Finally, we can write (3.1) as:

$$V \simeq \bigoplus_i W_i \otimes \operatorname{Hom}_B(W_i, V)$$

so that the decomposition is also a *B*-module isomorphism. Hence, it's a $A \otimes B$ -module isomorphism, which is (3).

4. Proof of Schur-Weyl Duality

The proof of 2.1 comes in two steps; we will prove that the span of the image of $\mathfrak{gl}(V)$ and S_n in $\operatorname{End}(V^{\otimes n})$ are centralizers of each other, then prove that the span of the image of $\mathfrak{gl}(V)$ and $\operatorname{GL}(V)$ in $\operatorname{End}(V^{\otimes n})$ are the same.

Thus, the proof of Schur-Weyl duality will be split into two theorems. The first theorem is the following:

Theorem 4.1. The subalgebra of $\operatorname{End}(V^{\otimes n})$ spanned by the image of $\mathfrak{gl}(V)$ is $B = \operatorname{End}_{\mathbb{C}[S_n]}(V^{\otimes n}).$

Proof. Recall that the action of $X \in \mathfrak{gl}(V)$ on $V^{\otimes n}$ is:

$$X \cdot (v_1 \otimes \ldots \otimes v_n) = \sum_{i=1}^n v_1 \otimes \ldots \otimes X \cdot v_i \otimes \ldots \otimes v_n.$$

This means that the image of X in $\operatorname{End}(V^{\otimes n})$ is

$$\Pi_n(X) = \sum_{i=1}^n \mathrm{id} \otimes \ldots \otimes X \otimes \ldots \otimes \mathrm{id}$$

. This image obviously commute with any $\sigma \in S_n$, hence is in B. On the other hand,

$$B = \operatorname{End}_{\mathbb{C}[S_n]}(V^{\otimes n})$$
$$= \operatorname{End}(V^{\otimes n})^{S_n}$$
$$\simeq (End(V)^{\otimes n})^{S_n}$$
$$\simeq \operatorname{Sym}^n \operatorname{End}(V)$$

which is spanned by $\{X^{\otimes n} \mid X \in \text{End}(V)\}.$

However, we know from the theory of elementary polynomial that

$$X^{\otimes n} = \mathcal{P}(\Pi_n(X), \Pi_n(X^2), \dots, \Pi_n(X^n))$$

for some polynomial P.

Thus, $X^{\otimes n}$ is in the span of the image of $\mathfrak{gl}(V)$ for any $X \in \operatorname{End}(V)$, and so B is precisely the span of the image of $\mathfrak{gl}(V)$.

The other part of the proof relates the image of $\mathfrak{gl}(V)$ and $\mathrm{GL}(V)$:

Theorem 4.2. The span of the image of $\mathfrak{gl}(V)$ and $\operatorname{GL}(V)$ in $\operatorname{End}(V^{\otimes n})$ are the same.

Proof. Let B' the span of the image of GL(V) in $End(V^{\otimes n})$. From our discussion earlier that the action of GL(V) and S_n on $V^{\otimes n}$ commutes, we get that $B' \subset B$.

Notice that the image of $g \in \operatorname{GL}(V)$ in $\operatorname{End}(V^{\otimes n})$ is $g^{\otimes n}$. Hence, to establish the reverse inclusion, the span of $\{g^{\otimes n} \mid g \in \operatorname{GL}(V)\}$ equal the span of $\{X^{\otimes n} \mid X \in \operatorname{End}(V)\}$.

Equivalently, it suffices to prove that any $X \in \text{End}(V)$ is in the span of $\{g \mid g \in \text{GL}(V)\}$. But this is not hard to prove, since there exists infinitely many $t \in \mathbb{R}$ such that X + tI is invertible (hence in GL(V)), and then X = (X + tI) - tI is in the span of $\{g \mid g \in \text{GL}(V)\}$.

To finish the proof of Schur-Weyl duality, note that since S_n is a finite group, the subalgebra spanned by the image of S_n in $\operatorname{End}(V^{\otimes n})$ is semi-simple. From there, we can apply the Double Commutant Theorem to get the decomposition:

$$V^{\otimes n} \simeq \bigoplus_{|\lambda|=n} V_{\lambda} \otimes S_{\lambda} V.$$

5. Schur Functor and Examples

In the decomposition of Schur-Weyl Duality, we note that there is a map $V \mapsto S_{\lambda}V$ for a given tableau λ of n. This can be upgraded to a functor S_{λ} (so that any map $f: V \to W$ induces a map $S_{\lambda}f: S_{\lambda}V \to S_{\lambda}W$), called the **Schur functor**.

We can describe the space $S_{\lambda}V \simeq \operatorname{Hom}_{S_n}(V_{\lambda}, V^{\otimes n})$ more explicitly using the definition of a Young symmetrizer.

Definition 5.1. Given a tableau λ of *n* with standard numbering, denote:

$$P_{\lambda} = \{ g \in S_n \mid g \text{ preserves every row of } \lambda \},\$$

and

$$Q_{\lambda} = \{ g \in S_n \mid g \text{ preserves every column of } \lambda \}.$$

Furthermore, let

$$a_{\lambda} = \sum_{g \in P_{\lambda}} g \text{ and } b_{\lambda} = \sum_{g \in Q_{\lambda}} \operatorname{sgn}(g)g.$$

Then $c_{\lambda} = a_{\lambda}b_{\lambda}$ is called the **Young symmetrizer** of λ .

A classical result in the representation of the symmetric group states that these Young symmetrizers are in correspondence with the irreducible representations of S_n . **Theorem 5.2.** Given any standard tableau λ of n, the space $V_{\lambda} = \mathbb{C}[S_n]c_{\lambda}$ is an irreducible representation of S_n . Furthermore, any irreducible representation of S_n is isomorphic to $\mathbb{C}[S_n]c_{\lambda}$ for some tableau λ .

From the theorem above, we can obtain a more explicit description of $S_{\lambda}V$. Since any representation of S_n is self-dual, we have:

$$S_{\lambda}V = \operatorname{Hom}_{S_{n}}(V_{\lambda}, V^{\otimes n})$$

$$\simeq (V_{\lambda})^{*} \otimes_{\mathbb{C}[S_{n}]} V^{\otimes n}$$

$$\simeq V_{\lambda} \otimes_{\mathbb{C}[S_{n}]} V^{\otimes n}$$

$$= \mathbb{C}[S_{n}]c_{\lambda} \otimes_{\mathbb{C}[S_{n}]} V^{\otimes n}$$

$$\simeq V^{\otimes n}c_{\lambda}$$

In general, there is no nice description for $S_{\lambda}V$, but special cases of λ give some familiar constructions.

If $\lambda = (n)$, then

$$c_{(n)} = \sum_{g \in S_n} g$$
, hence $S_{(n)}V \simeq \operatorname{Sym}^n V$.

If $\lambda = (1, 1, ..., 1)$, then

$$c_{(1,1,\ldots,1)} = \sum_{g \in S_n} \operatorname{sgn}(g)g, \text{ hence } S_{(1,1,\ldots,1)}V \simeq \bigwedge^k V.$$

If $\lambda = (n-1, 1)$, then the description is not as nice, but we can still obtain that

$$S_{(n-1,1)}V \simeq \operatorname{Ker}(\operatorname{Sym}^{n-1}V \otimes V \to \operatorname{Sym}^n V),$$

and similarly,

$$S_{(2,1,\ldots,1)}V \simeq \operatorname{Ker}(\bigwedge^{n-1} V \otimes V \to \bigwedge^n V).$$

References

- [1] James Stevens. Schur-Weyl Duality. UChicago REU 2016.
- http://math.uchicago.edu/ may/REU2016/REUPapers/Stevens.pdf
- [2] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina. Introduction to Representation Theory. http://www-math.mit.edu/ etingof/replect.pdf
- [3] Qiaochu Yuan. Four flavors of Schur-Weyl duality. https://qchu.wordpress.com/2012/11/13/four-flavors-of-schur-weyl-duality/
- [4] Qiaoochu Yuan. The double commutant theorem. https://qchu.wordpress.com/2012/11/11/the-double-commutant-theorem/